

Physics - Grade 11 S

Unit Two: Mechanics

Chapter 8 – Newton's Second Law

Prepared & Presented by: Mr. Mohamad Seif

SOLVING

Exercise 1: Rectilinear motion of a car

A car of mass 1000 Kg is moving under the engine force of magnitude F=500N. Neglect friction.

- 1) Draw a free body diagram showing all forces.
- 2) Apply newtons second law, calculate the acceleration of the box.
- 3) Specify the nature of motion then calculate the distance covered, knowing that the car starts from rest and moves 10 seconds.

Given:
$$m = 1000 \text{ Kg}$$
; $F = 500N$; $f = 0N$; $v_0 = 0$.

1) Draw a free body diagram showing all forces.

The forces are:

- Weight: \overrightarrow{W} . Normal: \overrightarrow{N} Engine force: \overrightarrow{F}

2) Apply newton's second law, calculate the acceleration of the box.

$$\sum \overrightarrow{F}_{ex} = m\overrightarrow{a}$$

$$\sum_{i} \vec{F}_{ex} = m\vec{a}$$

Project along the direction of motion:

$$F = ma$$

$$a=\frac{F}{m}=\frac{500}{1000}$$

$$a=0.5m/s^2$$

3) Specify the nature of motion then calculate the distance covered after 10 seconds, knowing that the car starts from rest.

$$a = 0.5m/s^2 > 0$$
 then:

The motion is U.A.R.M.

Using the time equation:

$$x = \frac{1}{2}at^2 + v_0t + x_0.$$

$$x = \frac{1}{2} \times 0.5 \times (10)^2 + 0 \times (10) + 0$$

$$S_{na} = \frac{1}{2} \times 0.5 \times (10)^{2}$$
ADEMY

$$x = 12.5m$$

SOLVING

Exercise 2: motion of a box

A box, considered as a particle, of mass 5 Kg starts from rest, is pulled by a rope with a constant force \vec{F} of value F = 6N making an angle of 30° with the horizontal.

The friction between the box and the surface is constant f = 2N

- 1) Draw a free body diagram showing all forces.
- 2) Apply newtons second law, calculate the acceleration of the box.
- 3) Specify the nature of motion then calculate the velocity after moving a distance x = 3m.
- 4) Calculate the value of the normal reaction.

$$m = 5kg; F = 6N; \theta = 30^{\circ}; f = 2N \& g = 10m/s^{2}; v_{0}$$

= 0; $x = 3m$.

- 1) Draw a free body diagram showing all forces.
- \overrightarrow{w} : weight vertical downward.
- \vec{N} : Normal Reaction vertical upward.
- \vec{F} : Applied Force upward to the right making an angle 30 with the horizontal.
- \vec{f} : friction force horizontal to the left

$$m = 5kg; F = 6N; \theta = 30^{\circ}; f = 2N \& g = 10m/s^2; v_0 = 0; x = 3m.$$

2) Apply newtons second law, calculate the acceleration of the

box.

$$\sum_{i} \vec{F}_{ex} = m\vec{a}$$

$$\overrightarrow{W} + \overrightarrow{N} + \overrightarrow{f} + \overrightarrow{F} = m\overrightarrow{a}$$

Project along direction of motion:

$$-f + F\cos\theta = ma$$

$$-2 + 6\cos 30 = 5 \times a$$

$$-2 + 5 \cdot 2 = 5 \times a$$

$$\overrightarrow{f}$$

$$\overrightarrow{W}$$

$$a = \frac{3.2}{5}$$

$$a=0.64m/m^2$$

$$m = 5kg; F = 6N; \theta = 30^{\circ}; f = 2N \& g = 10m/s^2; v_0 = 0; x = 3m.$$

3) Specify the nature of motion then calculate the velocity after moving a distance x = 3m.

$$a = 0.64 \, m/s^2 > 0$$
 then:

$$v^2 = 2 \times 0.64(3-0)$$

Then the motion is U.A.R.M

$$v^2 - v_0^2 = 2a(x - x_0)$$

$$v^2 - (0)^2 = 2 \times 0.64(3 - 0)$$

$$v = 1.95m/s$$

4) Calculate the value of the normal reaction.

$$\sum \vec{F}_{ex} = m\vec{a}$$

$$\overrightarrow{w} + \overrightarrow{N} + \overrightarrow{f} + \overrightarrow{F} = m\overrightarrow{a}$$

Projection along y- axis

$$-w + N + F \sin \theta = 0$$

-50 + N + 3 = 0

$$\frac{1}{47} + N = 0$$

$$N = 47 N$$

SOLVING

Exercise 3: motion of skier over inclined plane

A skier of mass $m = 60 \, Kg$ modeled as a particle, descends an inclined plane making an angle of $\alpha = 30^{\circ}$ with respect to the horizontal.

The frictions are given by : f = 30 N

- 1) Draw free body diagram then represent external forces.
- 2) Determine the acceleration of the skier and deduce its nature of motion.
- 3) Calculate the speed of the skier after 2 seconds knowing that its initial speed is $V_0 = 10m/s$.

m = 60 Kg; $\alpha = 30^{\circ}$; f = 30 N; $v_0 = 10 \text{m/s}$; g=10 N/m.

1) Draw free body diagram then represent external forces. ACAD

The forces are:

• Weight: (\overrightarrow{W})

• Normal (\vec{N})

• Friction (\vec{f})

Be Smart ACADEMY

$$m = 60 \text{ Kg}$$
; $\alpha = 30^{\circ}$; $f = 30 \text{ N}$; $v_0 = 10 \text{m/s}$; $g=10 \text{N/m}$.

2) Determine the acceleration of the skier and deduce

its nature of motion.

$$\sum \vec{F}_{ex} = m\vec{a}$$

$$\overrightarrow{W} + \overrightarrow{N} + \overrightarrow{F} = m\overrightarrow{a}$$

Projection along the direction of motion:

$$mgsin\alpha - f = ma$$

$$a = \frac{mgsin\alpha - f}{m}$$

$$\overrightarrow{w}_{y}$$

$$\overrightarrow{w}_{\alpha}$$

$$a = \frac{60 \times 10 \times \sin 30 - 30}{60}$$

$$E = \frac{60}{a} = \frac{60}{4.5m/s^2} > 0$$
UARM

m = 60 Kg; $\alpha = 30^{\circ}$; f = 30 N; $v_0 = 10 \text{m/s}$; g=10 N/m.

3) Calculate the speed of the skier after 2 seconds knowing that its initial speed is $V_0 = 10m/s$.

Using the time equation:

$$V = at + v_0$$

$$V = 4.5 \times 2 + 10$$

$$V = 4.5 \times 2 + 10$$

$$v = 19m/s$$

Be Smart Academy

